\(\int \frac {c+d \sin (e+f x)}{(3+3 \sin (e+f x))^2} \, dx\) [465]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 61 \[ \int \frac {c+d \sin (e+f x)}{(3+3 \sin (e+f x))^2} \, dx=-\frac {(c-d) \cos (e+f x)}{3 f (3+3 \sin (e+f x))^2}-\frac {(c+2 d) \cos (e+f x)}{3 f (9+9 \sin (e+f x))} \]

[Out]

-1/3*(c-d)*cos(f*x+e)/f/(a+a*sin(f*x+e))^2-1/3*(c+2*d)*cos(f*x+e)/f/(a^2+a^2*sin(f*x+e))

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 65, normalized size of antiderivative = 1.07, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {2829, 2727} \[ \int \frac {c+d \sin (e+f x)}{(3+3 \sin (e+f x))^2} \, dx=-\frac {(c+2 d) \cos (e+f x)}{3 f \left (a^2 \sin (e+f x)+a^2\right )}-\frac {(c-d) \cos (e+f x)}{3 f (a \sin (e+f x)+a)^2} \]

[In]

Int[(c + d*Sin[e + f*x])/(a + a*Sin[e + f*x])^2,x]

[Out]

-1/3*((c - d)*Cos[e + f*x])/(f*(a + a*Sin[e + f*x])^2) - ((c + 2*d)*Cos[e + f*x])/(3*f*(a^2 + a^2*Sin[e + f*x]
))

Rule 2727

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> Simp[-Cos[c + d*x]/(d*(b + a*Sin[c + d*x])), x]
/; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2829

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*
c - a*d)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(a*f*(2*m + 1))), x] + Dist[(a*d*m + b*c*(m + 1))/(a*b*(2*m + 1)
), Int[(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 -
b^2, 0] && LtQ[m, -2^(-1)]

Rubi steps \begin{align*} \text {integral}& = -\frac {(c-d) \cos (e+f x)}{3 f (a+a \sin (e+f x))^2}+\frac {(c+2 d) \int \frac {1}{a+a \sin (e+f x)} \, dx}{3 a} \\ & = -\frac {(c-d) \cos (e+f x)}{3 f (a+a \sin (e+f x))^2}-\frac {(c+2 d) \cos (e+f x)}{3 f \left (a^2+a^2 \sin (e+f x)\right )} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 40, normalized size of antiderivative = 0.66 \[ \int \frac {c+d \sin (e+f x)}{(3+3 \sin (e+f x))^2} \, dx=-\frac {\cos (e+f x) (2 c+d+(c+2 d) \sin (e+f x))}{27 f (1+\sin (e+f x))^2} \]

[In]

Integrate[(c + d*Sin[e + f*x])/(3 + 3*Sin[e + f*x])^2,x]

[Out]

-1/27*(Cos[e + f*x]*(2*c + d + (c + 2*d)*Sin[e + f*x]))/(f*(1 + Sin[e + f*x])^2)

Maple [A] (verified)

Time = 0.75 (sec) , antiderivative size = 60, normalized size of antiderivative = 0.98

method result size
parallelrisch \(\frac {-6 \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right ) c +\left (-6 c -6 d \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )-4 c -2 d}{3 f \,a^{2} \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3}}\) \(60\)
risch \(-\frac {2 \left (-c +3 i c \,{\mathrm e}^{i \left (f x +e \right )}+3 i d \,{\mathrm e}^{i \left (f x +e \right )}+3 d \,{\mathrm e}^{2 i \left (f x +e \right )}-2 d \right )}{3 f \,a^{2} \left ({\mathrm e}^{i \left (f x +e \right )}+i\right )^{3}}\) \(68\)
derivativedivides \(\frac {-\frac {2 c}{\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1}-\frac {-2 c +2 d}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{2}}-\frac {2 \left (2 c -2 d \right )}{3 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3}}}{a^{2} f}\) \(70\)
default \(\frac {-\frac {2 c}{\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1}-\frac {-2 c +2 d}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{2}}-\frac {2 \left (2 c -2 d \right )}{3 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3}}}{a^{2} f}\) \(70\)
norman \(\frac {-\frac {2 c \left (\tan ^{4}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{f a}+\frac {\left (-2 c -2 d \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{f a}+\frac {-4 c -2 d}{3 f a}+\frac {2 \left (-c -d \right ) \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{f a}+\frac {2 \left (-5 c -d \right ) \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{3 f a}}{a \left (1+\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right ) \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3}}\) \(144\)

[In]

int((c+d*sin(f*x+e))/(a+a*sin(f*x+e))^2,x,method=_RETURNVERBOSE)

[Out]

1/3*(-6*tan(1/2*f*x+1/2*e)^2*c+(-6*c-6*d)*tan(1/2*f*x+1/2*e)-4*c-2*d)/f/a^2/(tan(1/2*f*x+1/2*e)+1)^3

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.92 \[ \int \frac {c+d \sin (e+f x)}{(3+3 \sin (e+f x))^2} \, dx=\frac {{\left (c + 2 \, d\right )} \cos \left (f x + e\right )^{2} + {\left (2 \, c + d\right )} \cos \left (f x + e\right ) + {\left ({\left (c + 2 \, d\right )} \cos \left (f x + e\right ) - c + d\right )} \sin \left (f x + e\right ) + c - d}{3 \, {\left (a^{2} f \cos \left (f x + e\right )^{2} - a^{2} f \cos \left (f x + e\right ) - 2 \, a^{2} f - {\left (a^{2} f \cos \left (f x + e\right ) + 2 \, a^{2} f\right )} \sin \left (f x + e\right )\right )}} \]

[In]

integrate((c+d*sin(f*x+e))/(a+a*sin(f*x+e))^2,x, algorithm="fricas")

[Out]

1/3*((c + 2*d)*cos(f*x + e)^2 + (2*c + d)*cos(f*x + e) + ((c + 2*d)*cos(f*x + e) - c + d)*sin(f*x + e) + c - d
)/(a^2*f*cos(f*x + e)^2 - a^2*f*cos(f*x + e) - 2*a^2*f - (a^2*f*cos(f*x + e) + 2*a^2*f)*sin(f*x + e))

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 372 vs. \(2 (56) = 112\).

Time = 1.23 (sec) , antiderivative size = 372, normalized size of antiderivative = 6.10 \[ \int \frac {c+d \sin (e+f x)}{(3+3 \sin (e+f x))^2} \, dx=\begin {cases} - \frac {6 c \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )}}{3 a^{2} f \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 9 a^{2} f \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 9 a^{2} f \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )} + 3 a^{2} f} - \frac {6 c \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )}}{3 a^{2} f \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 9 a^{2} f \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 9 a^{2} f \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )} + 3 a^{2} f} - \frac {4 c}{3 a^{2} f \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 9 a^{2} f \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 9 a^{2} f \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )} + 3 a^{2} f} - \frac {6 d \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )}}{3 a^{2} f \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 9 a^{2} f \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 9 a^{2} f \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )} + 3 a^{2} f} - \frac {2 d}{3 a^{2} f \tan ^{3}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 9 a^{2} f \tan ^{2}{\left (\frac {e}{2} + \frac {f x}{2} \right )} + 9 a^{2} f \tan {\left (\frac {e}{2} + \frac {f x}{2} \right )} + 3 a^{2} f} & \text {for}\: f \neq 0 \\\frac {x \left (c + d \sin {\left (e \right )}\right )}{\left (a \sin {\left (e \right )} + a\right )^{2}} & \text {otherwise} \end {cases} \]

[In]

integrate((c+d*sin(f*x+e))/(a+a*sin(f*x+e))**2,x)

[Out]

Piecewise((-6*c*tan(e/2 + f*x/2)**2/(3*a**2*f*tan(e/2 + f*x/2)**3 + 9*a**2*f*tan(e/2 + f*x/2)**2 + 9*a**2*f*ta
n(e/2 + f*x/2) + 3*a**2*f) - 6*c*tan(e/2 + f*x/2)/(3*a**2*f*tan(e/2 + f*x/2)**3 + 9*a**2*f*tan(e/2 + f*x/2)**2
 + 9*a**2*f*tan(e/2 + f*x/2) + 3*a**2*f) - 4*c/(3*a**2*f*tan(e/2 + f*x/2)**3 + 9*a**2*f*tan(e/2 + f*x/2)**2 +
9*a**2*f*tan(e/2 + f*x/2) + 3*a**2*f) - 6*d*tan(e/2 + f*x/2)/(3*a**2*f*tan(e/2 + f*x/2)**3 + 9*a**2*f*tan(e/2
+ f*x/2)**2 + 9*a**2*f*tan(e/2 + f*x/2) + 3*a**2*f) - 2*d/(3*a**2*f*tan(e/2 + f*x/2)**3 + 9*a**2*f*tan(e/2 + f
*x/2)**2 + 9*a**2*f*tan(e/2 + f*x/2) + 3*a**2*f), Ne(f, 0)), (x*(c + d*sin(e))/(a*sin(e) + a)**2, True))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 214 vs. \(2 (61) = 122\).

Time = 0.21 (sec) , antiderivative size = 214, normalized size of antiderivative = 3.51 \[ \int \frac {c+d \sin (e+f x)}{(3+3 \sin (e+f x))^2} \, dx=-\frac {2 \, {\left (\frac {c {\left (\frac {3 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {3 \, \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 2\right )}}{a^{2} + \frac {3 \, a^{2} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {3 \, a^{2} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {a^{2} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}} + \frac {d {\left (\frac {3 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + 1\right )}}{a^{2} + \frac {3 \, a^{2} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {3 \, a^{2} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {a^{2} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}}\right )}}{3 \, f} \]

[In]

integrate((c+d*sin(f*x+e))/(a+a*sin(f*x+e))^2,x, algorithm="maxima")

[Out]

-2/3*(c*(3*sin(f*x + e)/(cos(f*x + e) + 1) + 3*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 2)/(a^2 + 3*a^2*sin(f*x +
 e)/(cos(f*x + e) + 1) + 3*a^2*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + a^2*sin(f*x + e)^3/(cos(f*x + e) + 1)^3)
+ d*(3*sin(f*x + e)/(cos(f*x + e) + 1) + 1)/(a^2 + 3*a^2*sin(f*x + e)/(cos(f*x + e) + 1) + 3*a^2*sin(f*x + e)^
2/(cos(f*x + e) + 1)^2 + a^2*sin(f*x + e)^3/(cos(f*x + e) + 1)^3))/f

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 64, normalized size of antiderivative = 1.05 \[ \int \frac {c+d \sin (e+f x)}{(3+3 \sin (e+f x))^2} \, dx=-\frac {2 \, {\left (3 \, c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 3 \, c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 3 \, d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 2 \, c + d\right )}}{3 \, a^{2} f {\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{3}} \]

[In]

integrate((c+d*sin(f*x+e))/(a+a*sin(f*x+e))^2,x, algorithm="giac")

[Out]

-2/3*(3*c*tan(1/2*f*x + 1/2*e)^2 + 3*c*tan(1/2*f*x + 1/2*e) + 3*d*tan(1/2*f*x + 1/2*e) + 2*c + d)/(a^2*f*(tan(
1/2*f*x + 1/2*e) + 1)^3)

Mupad [B] (verification not implemented)

Time = 7.03 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.59 \[ \int \frac {c+d \sin (e+f x)}{(3+3 \sin (e+f x))^2} \, dx=-\frac {2\,\cos \left (\frac {e}{2}+\frac {f\,x}{2}\right )\,\left (\frac {5\,c}{2}+\frac {d}{2}-\frac {c\,\cos \left (e+f\,x\right )}{2}+\frac {d\,\cos \left (e+f\,x\right )}{2}+\frac {3\,c\,\sin \left (e+f\,x\right )}{2}+\frac {3\,d\,\sin \left (e+f\,x\right )}{2}\right )}{3\,a^2\,f\,\left (\frac {3\,\sqrt {2}\,\cos \left (\frac {e}{2}-\frac {\pi }{4}+\frac {f\,x}{2}\right )}{2}-\frac {\sqrt {2}\,\cos \left (\frac {3\,e}{2}+\frac {\pi }{4}+\frac {3\,f\,x}{2}\right )}{2}\right )} \]

[In]

int((c + d*sin(e + f*x))/(a + a*sin(e + f*x))^2,x)

[Out]

-(2*cos(e/2 + (f*x)/2)*((5*c)/2 + d/2 - (c*cos(e + f*x))/2 + (d*cos(e + f*x))/2 + (3*c*sin(e + f*x))/2 + (3*d*
sin(e + f*x))/2))/(3*a^2*f*((3*2^(1/2)*cos(e/2 - pi/4 + (f*x)/2))/2 - (2^(1/2)*cos((3*e)/2 + pi/4 + (3*f*x)/2)
)/2))